Influence of anisotropic conductivity of the white matter tissue on EEG source reconstruction – a FEM simulation study
نویسندگان
چکیده
The aim of this study was to quantify the influence of the inclusion of anisotropic conductivity on EEG source reconstruction. We applied high-resolution finite element modeling and performed forward and inverse simulation with over 4000 single dipoles placed around an anisotropic volume block (with an anisotropic ratio of 1:10) in a rabbit brain. We investigated three different orientation of the dipoles with respect to the anisotropy in the white matter block. We found a weak influence of the anisotropy in the forward simulation on the electric potential. The relative difference measure (RDM) between the potentials simulated with and without taking into account anisotropy was less than 0.009. The changes in magnitude (MAG) ranged from 0.944 to 1.036. Using the potentials of the forward simulation derived with the anisotropic model and performing source reconstruction by employing the isotropic model led to dipole shifts of up to 2 mm, however the mean shift over all dipoles and orientations of 0.05 mm was smaller than the grid size of the FEM model (0.6 mm). However, we found the source strength estimation to be more influenced by the anisotropy (up to 7-times magnified dipole strength). Keywords—anisotropy, conductivity, FEM, animal model, simulation, EEG
منابع مشابه
Influence of Local and Remote White Matter Conductivity Anisotropy for a Thalamic Source on EEG/MEG Field and Return Current Computation
Inverse methods are used to reconstruct current sources in the human brain by means of Electroencephalography (EEG) and Magnetoencephalography (MEG) measurements of event related fields or epileptic seizures. There exists a persistent uncertainty regarding the influence of anisotropy of the white matter compartment on neural source reconstruction. In this paper, we study the sensitivity to anis...
متن کاملInfluence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
To achieve a deeper understanding of the brain, scientists, and clinicians use electroencephalography (EEG) and magnetoencephalography (MEG) inverse methods to reconstruct sources in the cortical sheet of the human brain. The influence of structural and electrical anisotropy in both the skull and the white matter on the EEG and MEG source reconstruction is not well understood. In this paper, we...
متن کاملInfluence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain
The inverse problem in Electroand Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields ...
متن کاملA finite-element reciprocity solution for EEG forward modeling with realistic individual head models
We present a finite element modeling (FEM) implementation for solving the forward problem in electroencephalography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically reduced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell spherical model and shown to perform comparably with two current state-o...
متن کاملThe influence of brain tissue anisotropy on human EEG and MEG.
The influence of gray and white matter tissue anisotropy on the human electroencephalogram (EEG) and magnetoencephalogram (MEG) was examined with a high resolution finite element model of the head of an adult male subject. The conductivity tensor data for gray and white matter were estimated from magnetic resonance diffusion tensor imaging. Simulations were carried out with single dipoles or sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005